Este sitio web utiliza cookies para mejorar su experiencia mientras navega. Las cookies que se clasifican según sea necesario se almacenan en su navegador, ya que son esenciales para el funcionamiento de las características básicas del sitio web. También utilizamos cookies de terceros que nos ayudan a analizar y comprender cómo utiliza este sitio web. Estas cookies se almacenarán en su navegador solo con su consentimiento. También tiene la opción de optar por no recibir estas cookies. Pero la exclusión voluntaria de algunas de estas cookies puede afectar su experiencia de navegación.
Imprescindibles
Las cookies necesarias son absolutamente esenciales para que el sitio web funcione correctamente. Esta categoría solo incluye cookies que garantizan funcionalidades básicas y características de seguridad del sitio web. Estas cookies no almacenan ninguna información personal.
No imprescindibles
Estas cookies pueden no ser particularmente necesarias para que el sitio web funcione y se utilizan específicamente para recopilar datos estadísticos sobre el uso del sitio web y para recopilar datos del usuario a través de análisis, anuncios y otros contenidos integrados. Activándolas nos autoriza a su uso mientras navega por nuestra página web.
El presente libro tiene una clara vocación didáctica, se dirige a todas las personas que quieren adentrarse en el apasionante campo del aprendizaje automáticocombinando la teórica con la práctica paraque sea sencillo asimilar las explicaciones.E... Seguir leyendo
info
El presente libro tiene una clara vocación didáctica, se dirige a todas las personas que quieren adentrarse en el apasionante campo del aprendizaje automáticocombinando la teórica con la práctica paraque sea sencillo asimilar las explicaciones.En esta obra se revisan los algoritmos más comunes y su implementación en Python. Comienza con una introducción a las claves que han impulsado nuestra sociedad hacia âôla era de los datosâö y explora cómo, mediante técnicas de aprendizaje automático, obtener partido a la inmensa cantidad de datos que hoy nos rodea. A continuación, se presenta el aprendizaje no supervisado con sus principales algoritmos y usos: agrupamiento, manifolds, reglas de asociación y algoritmos de detección de anomalías. Le sigue el aprendizaje supervisado, partiendo delmodelo más simple, modelo lineal multivariante, se llega a las Máquinas de Soporte Vectorial (SVM). Finalmente, finaliza con el aprendizaje profundo (gran parte de lo que denominamos Inteligencia Artificial) donde se explican, de una manera sencilla e intuitiva, los perceptrones multicapa profundos, las redes convolucionales prof